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.     Starter    .
Differentiate the following:

 1) 
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Find the second derivative
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6) Find the gradient of the tangent to 
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 at x = 3
7) Find the equation of the tangent line to the curve  
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      at x = 1
8) Find the coordinates of the point on the curve 
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 where the gradient is 9

(Hint: 2 solutions)
.     Increasing and decreasing functions    .
[image: image15.wmf]=

¢

¢

)

(

x

f

[image: image16.wmf]=

¢

¢

y

[image: image17.wmf]=

2

2

dx

y

d

An increasing function has a 
positive gradient   y΄ > 0 
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A decreasing function has a 
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negative gradient   y΄ < 0
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Stationary points have gradient = zero 

f’(x) = 0

















 y΄ = 0    
 
Examples

1) Define where the function f(x) = 3x – 2x2   is increasing and decreasing
Steps:


Find the stationary point   f(‘x) = 0     x = ?
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Function Increasing when f’(x) > 0  
x?


Function Decreasing when f’(x) < 0  
x?

2) Define where the function f(x) = x3 + 9x2 + 5x  is increasing and decreasing
.     Second Derivative Test    .
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Key Concepts

FIRST Derivative gives the gradient of a curve 
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ie. The rate of change of y
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Notation:

SECOND Derivative gives the rate of change of the gradient of y
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ie. How the gradient of y changes.
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Notation:

At a Maximum and Minimum the gradient = 0
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At the Maximum the 2nd derivative is NEGATIVE
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At the Minimum the 2nd derivative is POSITTIVE
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.     Second derivative Practice    .
(Excellence)

Use calculus to find the coordinates of the turning points of these functions and determine their nature (is it a maximum or minimum?) 
1) f(x) = 3x2 + 24x
    f’(x) = 6x + 24 = 0 at min/max
    6x = -24  so x = -4





    Find coordinate of stationary point   y = 3x2 + 24x





    f’’(x) = 6






 y = 3.(-4)2 + 24.-4 = -48

    Second derivative is positive so a maximum point


2) 
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