Networks: #2 Rat Maze

Peter is experimenting with rat psychology. He builds a maze for his rats to move through. He rewards them if they manage to go through each gap once and only once.

His newest maze is below:

(a) Can a rat make it through the maze going through each gap once and only one? Explain your answer in detail.

Below is a table for another similar maze, with the times in seconds to go from area to area:

	А		_					
В	12	В						
С	1	_	С					
D	1	_	10	D				
E	-	_	_	8	E			
F	9	8	_		_	F		_
G	1	_	_	1	_	7	G	
Н	_	15	8	_	_	_	10	Н
I	1	_		16	7			18

(b) Draw the maze, and use that to find the quickest path between A and E.

(c) Can a rat make it through this maze going through each gap once and only one?

2013

Answers Networks #2 Rat Maze

Peter is experimenting with rat psychology. He builds a maze for his rats to move through. He rewards them if they manage to go through each gap once and only once.

His newest maze is below:

(a) Can a rat make it through the maze going through each gap once and only one? Explain your answer in detail.

Every vertex is even in the network. So a rat can make a lap back to where it started from any starting position going through each door without.

Below is a table for another similar maze, with the times in seconds to go from area to area:

	А		_					
В	12	В		_				
С		_	С		_			
D		_	10	D		_		
E		_	_	8	E			
F	9	8	_	_	_	F		_
G	-	_	_	_	_	7	G	
Н	_	15	8	_	_	_	10	Н
I	_	_		6	18			12

- (b) Draw the maze, and use that to find the quickest path between A and E.
 The quickest path is A F G H C D E
- (c) Can a rat make it through this maze going through each gap once and only one?
 There are four odd vertices in the network (B, D, F and I) so a rat cannot make 13 a full lap without repeating or door, no matter where it starts.